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Abstract:

Radar and other electromagnetic sensors can be used to locate hidden bombs and ground
mines. To function well, the sensors need adequate soil characteristics, such as how much water is
in the soil. People frequently use math to estimate how much water is in the ground in order to
predict how well electromagnetic sensors will function. Because there are so many different
varieties to choose from, each with their unique qualities, it can be challenging to select the best
model for various circumstances. This essay discusses many models and approaches for
understanding how materials conduct electricity. Some of these involve creating models based on
how the substance appears or on earlier findings.
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Introduction:

There are many countries where there are dangerous land mines and explosives still lying
around. Land mines and UXO on the ground are very dangerous and make the land dangerous too.
So we need to clean it up to keep people safe. Lots of ways to find buried landmines and
unexploded ordnance (UXO) use electrical signals. The characteristics of the material that
surrounds an object we want to study are very important. It helps us see the object better by making
it stand out from the surrounding material. The way a material can stop or slow down
electromagnetic waves affects how those waves travel and bounce back. The way a material works
when electricity passes through it depends on things like how it feels, how tightly it's packed, what
kind of rocks or minerals it has, how much natural material it has, and how often the electricity is
passing through. But water content is most important. In the past, people found out that changes in
space and time can affect the soil system. The reason why landmines and UXOs look different is
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because the soil around them is different in different places and at different times. The amount of
water in soil can be different in different places, even if they are very close together. This is true in
many different types of environments. Variations in soil water content can affect sensor
performance differently over small areas. We can guess how well a sensor will work in certain
types of soil by knowing how the soil and the sensor interact. To guess how well electromagnetic
sensors will work, experts often use models to guess what the ground is made of. Different models
have been suggested to describe the properties of soil, but none cover all the different aspects. It can
be difficult to choose the right model for every situation.

There are different ways to measure things in soil. These methods can be sorted into four
groups: guessing based on what we already know (like the Cole-Cole or Debye method),
measuring how much space the soil takes up, using past experience to make a guess (like the
pedotransfer method), and using math to figure out an average or overall measurement. The
method called effective medium approach or composite spheres model is only good for simple
shapes and it's hard to use for things that have different materials mixed together. We think this way
of doing things is not helpful in finding landmines and bombs, so we won't talk about it in this
paper. We wrote an article that looks at different ways of predicting how well electricity flows
through soil in fields. This review tries to explain the main ways people approach things. We talk
about the most important leaders and papers of every method. We will talk about what each method
is like, how it can be used, and its good and bad points. Lastly, we will talk about the different ways
and give suggestions on how to make the current models better.

Theory:

The way electromagnetic energy affects things depends on what that thing is made of and
how fast the energy is moving. The ability of a material to hold an electrical charge can differ
depending on the frequency of the electrical signal. This can cause some energy to be lost due to
different ways the charge moves in the material. Different types of small-scale vibrations called
resonance cause relaxation. In a mixture of soil, there are different ways that the material can
loosen up. This can happen because of the solid parts, the water inside the soil, or how these two
things interact with each other. This picture shows different ways that make wet soil relax. There
are tools that can find hidden things underground. These tools use frequencies between 0.1 and 10
GHz. They mainly look for resonance caused by bound water relaxation.
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Fig. Graph showing frequency-dependent dielectric properties and major relaxation
phenomena of wet soils. € and €” refer to the real and imaginary parts of the relative permittivity,
respectively, while €” (o) represents the dc conductivity.

Dielectric permittivity (¢*) is a complex function with real and imaginary components and is
definedase=¢’'—¢" x|
Where j is the square root of -1.

The real part (¢”) is often expressed as the relative permittivity (er), which is the ratio of the
electric-field storage capacity to that of free spacell. The relative permittivity is a frequency
dependent variable and decreases with increasing frequencyl5. The imaginary part (¢”) of the
dielectric permittivity is usually expressed in terms of dielectric losses, which include dispersive
losses, as well as free-water relaxation and bound-water relaxation losses (Fig.). At frequencies
below 1 to 1.5 GHz €* is only weakly frequency dependent16 and dielectric losses are generally
lowl7. However, at these low frequencies €’ and €” are very sensitive to changes in soil water
conductivity above about 10 mS/m. At frequencies below around 50 MHz €* depends strongly on
soil type. At frequencies above about 1 to 1.5 GHz the dielectric losses increase with increasing
water content, even for low conductivity values. Several studies document measurements of
frequency dependent dielectric soil properties (Table). The results from these measurements show
that is difficult to describe the relationship between textural characteristics and the frequency
dependent complex dielectric properties of soils using one single model.

Table 1. Characteristics of some studies that document measurements of frequency dependent
dielectric soil properties.
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Name and Frequency range # of [soils] & .
reference (GH2) Input samples Soil types
Wensink 0.001-3 0 11 Clay, Silt, Peat

Knoll 0.0001, 0.001, V, 0 11 artificial mixtures of
0.01 sand and Clay
Heimovaara 0 3 USDA": SiL, LSa,
Curtis 0.001-0.15 Tw0 [12] 30° SiCIL
0.45-26.5 USDA" : Sa, Sal,
Si, SiCl, SiCIL,CI
Nguyen 0 1 Sand
1-0.75
0: volumetric water content, V.: volume air fraction in soil,
T soil water temperature. USDA texture classification

J.O. Curtis, personal communication.

Literature Review:

1. Phenomenological models:

Phenomenological models, like Cole-Cole and Debye, show how a material behaves at different
frequencies based on how long it takes to relax. These models help to check how well materials
conduct electricity at certain frequencies. The Cole-Cole relaxation model explains how things can
become polarized when they are exposed to different frequencies. The complex dielectric
permittivity is a measurement that describes how well a material can store electric charge.

4= 8.\‘ — goo . j O_c/('
EN LN 2afe,
sl W 3 B SO g <o

£ (f)=|e.

Where €s and g are the static value of the dielectric permittivity and the high-frequency limit of
the real dielectric permittivity, respectively. For H20 €s and e equal 80 and 4.22, respectively,
depending on temperature. &, is the dielectric permittivity of free space (8.854-10-12 F/m) 22. frel
is the dielectric relaxation frequency of the material (17.1 GHz for water),

odcis the electrical conductivity and  is an empirical parameter to describe the spread in relaxation
frequencies, which increases with the complexity of the mixture. For distilled water, or other pure
liquids with a single relaxation frequency, B is zero, resulting in the original Debye model. For tap
water and moist sandy soils B is 0.0125 and 0.3 according to Heimovaara and Roth et al.
respectively. Some other values for  are reported in literature.

According to the Cole-Cole model the complex resistivity or impedance can be expressed as,
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Where R, is the dc resistivity, m is a variable (0.1-1.0) depending on the mineral content, ® is the
(radial) frequency, t (range 10-4-104) is the time constant, and c is a variable (0.2-0.6) depending
on the grain size distribution. Roth et al. report a value of 8 for t in moist sandy soils. T values for
different materials have been reported in the literature

As seen from the formulations above phenomenological models need recalibration for each specific
material. Therefore, it is difficult to use these models to describe the dielectric differences between
varying soil types.

2. Volumetric models:

"Volumetric models explain how much electricity can pass through different parts of soil
based on what they're made of and how they react to electricity.” All models need information
about solid matter, pore space, and how much water is in the space. Depending on the type of
model used, adding information about the amount of organic matter and bound water in the system
may help to improve the accuracy of certain predictions. Normally, we don't consider how
frequency affects things. The models have been calibrated, for example, by time-domain
reflectometry. Over the years different volumetric mixing models have been proposed that can be
grouped in different types such as Arithmetic Average, Harmonic Average, Liechtenecker-Rother,
and Time-Propagation. The Complex Refractive Index (CRI) model or exponential model, which is
based on the Liechtenecker-Rother model, is one of the most popular methods. The CRI model for
a material with n components can be written as:

"
. . 5 bt
E/n - Z \-{.Et.

=1

Where VI is the volume fraction of the ith soil constituent, and a is an empirical variable
(0.5 according to some authorse.g. The scaling factor o gives CRI and other volumetric mixing
models a semi-empirical nature. The o parameter can theoretically vary from —1 to +1 but for
multiphase mixtures such as soils values between 0.4 and 0.8 have been found. Other values for a
reported in the literature are 0.33, 0.46 for three-phase systems and 0.65 for four phase systems
including bound water. Several attempts have been made to give a more physical basis to the
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scaling factor. It has been shown that the value of a also (inversely) correlates with the
measurement frequency.

Another volumetric mixing model is the Maxwell-De Loor model, which assumes disc-
shape inclusions with random distribution and orientation. This model has been used to describe
dielectric properties of four-phase mixtures (ém) using

3 l
£, =€+ % (&, ~€. )%
j=l -

A1+ AE (€, ~]

e

Here, €h, €i, and €b are the dielectric permittivity of the host medium (solids), the
permittivity of the inclusions, and the effective permittivity near boundaries, respectively, VI
represents the volume fraction of the inclusions, and Aj refers to the depolarization ellipsoid
factors. Recently, a new volumetric mixing equation based purely on the depolarization factors of
different soil constituents has been introduced
This model has a strong theoretical basis and tries to overcome some problems that exist in other
volumetric mixing models. In this approach the measured dielectric permittivity is related to the
volume-weighted sum of the permittivities of the individual material constituents. A depolarization
factor (S) is introduced to account for electric-field refractions at the material interfaces. In this
mixing equation:

n

(e-1)=> (& -1)S,v,

i=l

Where V1 is the volume fraction of the ith soil constituent, S is related to the electric field refraction
in soil, which is in turn a function of the shape and surface roughness of the grains. Theoretically,
the depolarization factor can be calculated for all materials but currently this is only possible for
homogeneous materials with regular-shaped grains.

3. (Semi-) Empirical models:

Empirical models are mathematical descriptions of the relationship between dielectric
properties and other characteristics of a medium, especially volumetric water content and texture
information. There is not necessarily a physical basis for the mathematical description. Therefore,
an empirical model may only be valid for the data that were used to develop the relationship. Many
empirical models have originated in the field of time-domain reflectometry (TDR), and were
originally used to predict the soil water content from the velocity of electromagnetic signals along
TDR probes in the soil.

pg. 18



International Journal of Classified Research Techniques & Advances (IJCRTA)
Multidisciplinary Peer-Reviewed Online Open Access Journal Impact Factor: 5.455

Volume 3, Issue 2, April-June 2023 ID: IJCRTAQ000072 ISSN: 2583-1801
Email: ijcrta@gmail.com Website: www.ijcrta.org

The classic Topp-modell6 uses a third order polynomial to describe the relation between soil
volumetric water content (0) and bulk or apparent relative permittivity (Ka) for measurements taken
below the relaxation frequency of water:

K, =3.03+9.30+14660° —76.76°

The regression is an average of TDR measurements integrated over a frequency range of 1
MHz to 1 GHz for several soils and has proved very successful for a wide range of different soils
and soil moisture conditions. Ledieu et al. propose a linear relationship between soil water content
and Ka, which can be used to expand the Topp-model for higher water contents. The model
functions especially good for frequencies around 100 MHz. At higher frequencies and moisture
contents close to saturation (6~0.4) the Topp-model over-predicts the bulk relative permittivity by
up to 20%yv At very low water contents the Topp-model does not perform well, especially for soils
with a large clay content. There exist various empirical models similar to equation that are suitable
for specific soil conditions. The bulk density has a profound effect on the relation between 6 and Ka
. Soils high in organic matter usually have a lower bulk density. Conversion functions have been
proposed to account for the bulk density and porosity variations between organic and mineral soils.
Dielectric measurements of samples high in organic matter content show that may under-predict 0
by about 30%. An alternative function has been proposed to account for this effect. Clay content
can have a significant effect on the relation between

The presence of aligned ellipsoidal particles, for example in bedding planes of sedimentary
deposits, also has an effect on the effective permittivity. Brisco et al. present results for
measurements with a field portable dielectric probe (PDP) at different frequencies ranging from
0.45 to 9.3 GHz. The measurement variability is rather large and the number of soils studied is
small. As a result, the third-order polynomial functions that are presented for each frequency may
contain a significant error. At frequencies below around 50 MHz the dielectric permittivity depends
strongly on soil type. Based on measurements of 6 soils at 1, 5, and 50 MHz it is shown that at the
lower frequencies the soil type has a strong impact on both € and ¢’ Third-order polynomial
functions for the data measured at 1 MHz and 50 MHz are given. Also data are presented that show
the effects of changes in volumetric water content and soil water temperature on the relationships
between frequency (1-50 MHz) and &*. Artificial Neural Networks (ANN’s) provide an alternative
means of determining the relationship between water content and bulk relative permittivity of soil
empirically, either directly or indirectly. Using 10 samples (sand, loamy sand, sandy loam, sandy
clay loam) from 5 different soils in Denmark Person et al. demonstrate that ANN’s can improve the
accuracy of predicting this relationship

ANN’s do not produce a universal predictive model and need to be recalibrated for each
new sample set. Semi-empirical models are powerful and useful hybrids between empirical models
and volumetric models. These models often use a volumetric mixing model as their base and have
been calibrated for a specific set of soils. The models include information of physical background
of dielectric behavior. They are sometimes able to describe frequency dependent behavior, but may
only be valid for the data that were used to develop the relationship. The models by Dobson and
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Peplinski use input of the percentage of clay and sand in a soil, as well as the volumetric water
content and bulk density to calculate the complex frequency dependent properties of field soils. The
model by Hilhorst uses Debye relaxation parameters, the soil matric pressure, which is related to
textural characteristics, and a semi-empirical parameter (S, see equation) to calculate the complex
frequency dependent soil properties.

SUMMARY

The model chosen depends on how much detail is needed. This table shows different ways
to mix materials that work as insulators. Most methods of mixing and predicting things only need a
small amount of information to work. We can figure out some things about the way soil holds
electricity in an area just by looking at information about the soil and weather. We can use simple
models to help us do this. Semi-empirical models are like the ones made by Dobson and other
researchers. Peplinski and other authors. Hilhorst can give more information on how soil properties
change with different frequencies, but sometimes the information they need is not in databases.
When we need more details about how water flows through soil in different areas or at different
times, It is concluded that simple three- and four-phase CRI mixing models are adequate to describe
mineral soils4 For organic soils (definition: http://www.soils.org/sssagloss/) only four-phase mixing
models and the Maxwell-De Loor model provide good results.

Conclusion:

We looked at different ways to know more about how soil holds electricity. We divided the
methods into three groups: phenomenological, volumetric, and empirical. We described the main
features of each group. The models by Dobson et al. are very detailed but also simple to use.
Peplinski and his/her team. Their ideas come from testing many samples of soil and using a
scientific process to figure out how it changes depending on sound. This is a big problem because a
lot of devices used to find things underground rely on this frequency range. We recommend taking
more measurements at this frequency range. This will help us better understand how soil properties
change with frequency.
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